Milky way’s center harbors supernova ‘dust factory’

 

 

By Alton Parrish.

 

Sifting through the center of the Milky Way galaxy, astronomers have made the first direct observations – using an infrared telescope aboard a modified Boeing 747 – of cosmic building-block dust resulting from an ancient supernova.

“Dust itself is very important because it’s the stuff that forms stars and planets, like the sun and Earth, respectively, so to know where it comes from is an important question,” said lead author Ryan Lau, Cornell postdoctoral associate for astronomy, in research published March 19 in Science Express. “Our work strongly reinforces the theory that supernovae are producing the dust seen in galaxies of the early universe,” he said.

Lau explains that one of astronomy’s big questions is why galaxies – forming as recently as 1 billion years after the Big Bang – contain so much dust. The leading theory is that supernovae – stars that explode at the end of their lives – contain large amounts of metal-enriched material that, in turn, harbors key ingredients of dust, like silicon, iron and carbon.

The astronomers examined Sagittarius A East, a 10,000-year-old supernova remnant near the center of our galaxy. Lau said that when a supernova explodes, the materials in its center expand and form dust. This has been observed in several young supernova remnants – such as the famed SN1987A and Cassiopeia A.

A time sequence of Hubble Space Telescope images, taken in the 15 years from 1994 to 2009, showing the collision of the expanding supernova remnant with a ring of dense material ejected by the progenitor star 20,000 years before the supernova.
Credit:  Mark McDonald – Larsson, J. et al. (2011). “X-ray illumination of the ejecta of supernova 1987A”. Nature 474 (7352): 484–486., video compilation: Mark McDonald
In the turbulent supernova environment, scientists expect the churning dust to be destroyed. “That is theoretically,” Lau said. “There have been no direct observations of any dust surviving the environment of the supernova remnant … until now, and that’s why our observations of an ‘old’ supernova are so important,” he said.

 Astronomers have observed stars spinning around the supermassive black hole in Sagittarius A

Credit: ESA/Hubble

The astronomers captured the observations via FORCAST (the Faint Object Infrared Camera Telescope) aboard SOFIA (the Stratospheric Observatory for Infrared Astronomy), a modified Boeing 747 and a joint project of NASA, the German Aerospace Center and the Universities Space Research Association. It is the world’s largest airborne astronomical observatory. Currently, no space-based telescope can observe at far-infrared wavelengths, and ground-based telescopes are unable to observe light at these wavelengths due to the Earth’s atmosphere.

Cassiopeia A: A false color image composited of data from three sources. Red is infrared data from the Spitzer Space Telescope, orange is visible data from the Hubble Space Telescope, and blue and green are data from the Chandra X-ray Observatory. The cyan dot just off-center is the remnant of the star’s core.
Credit: NASA/JPL-Caltech

Joining Lau on this research, “Old Supernova Dust Factory Revealed at the Galactic Center,” are co-authors Terry Herter, Cornell professor of astronomy and principal scientific investigator on FORCAST; Mark Morris, University of California, Los Angeles; Zhiyuan Li, Nanjing University, China; and Joe Adams, NASA Ames Research Center.

 

What Next?

Recent Articles